BEGIN:VCALENDAR
VERSION:2.0
PRODID:-//talks.bham.ac.uk//v3//EN
BEGIN:VEVENT
CATEGORIES:Metamaterials and Nanophotonics Group Seminars
SUMMARY:Fluctuation-induced Light in Topological Systems -
Mario Silveirinha\, Universidade de Lisboa
DTSTART:20190327T140000Z
DTEND:20190327T150000Z
UID:TALK3456AT
URL:/talk/index/3456
DESCRIPTION:Topological materials and topological effects have
elicited significant interest\, first in the cond
ensed-matter community [1\, 2] and more recently i
n the photonics community [3]. The topological pha
ses of systems with a broken time-reversal symmetr
y are usually classified by a topological integer:
the Chern number.\nIn condensed-matter systems\,
the Chern number has a clear physical interpretati
on: it is the quantum of the Hall conductivity of
a 2D electron gas [2]\, and hence it\ndetermines t
he electronic transport for very low temperatures.
In contrast\, in optics the Chern index has not b
een linked to any physical entity\, except that it
is known that it gives the net number of gapless
unidirectional edge states supported by an interfa
ce with a trivial material.\nIn this talk\, I will
review the work of my group on topological photon
ics [4-9]. In particular\, I will highlight that t
he photonic Chern number has a precise physical me
aning as the quantum of the thermal fluctuation-in
duced light-angular momentum in a closed photonic
insulator cavity [8]. The nontrivial value the lig
ht angular momentum expectation is due to a circul
ation of thermal energy in closed orbits\, which m
ay occur even when a system is in a thermodynamic
equilibrium with a large reservoir [5]. I will sho
w that this link between topological effects and f
luctuation-induced light\, gives a rather elegant
proof of the bulk-edge correspondence [9].\n\n[1]
D. J. Thouless\, M. Kohmoto\, M. P. Nightingale\,
and M. den Nijs\, “Quantized Hall Conductance in a
Two-Dimensional Periodic Potential”\, Phys. Rev.
Lett.\, 49\, 405\, (1982).\n[2] F. D. M. Haldane\,
“Nobel lecture: Topological quantum matter\,” Rev
. Mod. Phys.\, 89\, 040502\, (2017).\n[3] L. Lu\,
J. D. Joannopoulos\, M. Soljačić\, “Topological ph
otonics”\, Nat. Photonics\, 8\, 821\, (2014).\n[4]
M. G. Silveirinha\, “Chern Invariants for Continu
ous Media”\, Phys. Rev. B\, 92\, 125153\, 2015.\n[
5] M. G. Silveirinha\, “Topological Angular Moment
um and Radiative Heat Transport in Closed Orbits”\
, Phys. Rev. B\, 95\, 115103\, 2017.\n[6] M. G. Si
lveirinha\, S. A. H. Gangaraj\, G. W. Hanson\, M.
Antezza\, “Fluctuation-induced forces on an atom n
ear a photonic topological material”\, Phys. Rev.
A\, 97\, 022509\, 2018.\n[7] S. A. Lannebère\, M.
G. Silveirinha\, “Link between the photonic and el
ectronic topological phases in artificial graphene
”\, Phys. Rev. B\, 97\, 165128\, 2018.\n[8] M. G.
Silveirinha\, “Quantized Angular Momentum in Topol
ogical Optical Systems”\, arXiv:1803.07121\, (2018
).\n[9] M. G. Silveirinha\, “Proof of the bulk-edg
e correspondence through a link between topologica
l photonics and fluctuation electrodynamics”\, arX
iv:1804.02190\, (2018).
LOCATION:Watson Building LT C (G24)
CONTACT:Dr Miguel Navarro-Cia
END:VEVENT
END:VCALENDAR