University of Birmingham > Talks@bham > Combinatorics and Probability seminar > Improving graph's parameters through random perturbation

Improving graph's parameters through random perturbation

Add to your list(s) Download to your calendar using vCal

If you have a question about this talk, please contact Dr. Jan Kurkofka.

Let G be a graph on n vertices, and assume that its minimum degree is at least k, or its independence number is at most t. What can be said then about various graph-theoretic parameters of G, such as connectivity, large minors and subdivisions, diameter, etc.? Trivial extremal examples (disjoint cliques, unbalanced complete bipartite graphs, random graphs and their disjoint unions) supply rather prosaic bounds for these questions.

We show that the situation is bound to change dramatically if one adds relatively few random edges on top of G (the so called randomly perturbed graph model, launched in a paper by Bohman, Frieze and Martin from 2003). Here are representative results, in a somewhat approximate form:

- Assuming delta(G)>=k, and for s < ck, adding about Cns*log (n/k)/k random edges to G results with high probability in an s-connected graph;

- Assuming alpha(G)<= t and adding cn random edges to G typically produces a graph containing a minor of a graph of average degree of order n/sqrt{t}.

In this talk I will introduce and discuss the model of randomly perturbed graphs, and will present our results.

A joint work with Elad Aigner-Horev and Dan Hefetz.

This talk is part of the Combinatorics and Probability seminar series.

Tell a friend about this talk:

This talk is included in these lists:

Note that ex-directory lists are not shown.

 

Talks@bham, University of Birmingham. Contact Us | Help and Documentation | Privacy and Publicity.
talks@bham is based on talks.cam from the University of Cambridge.