University of Birmingham > Talks@bham > Cold Atoms > An array of integrated atom-photon junctions

An array of integrated atom-photon junctions

Add to your list(s) Download to your calendar using vCal

If you have a question about this talk, please contact Vincent Boyer.

This talk has been canceled/deleted

Photonic chips that integrate optical elements on a single device can process vast amounts of information rapidly. A new branch of this technology involves coupling light to cold atoms or Bose–Einstein condensates, the quantum nature of which provides a basis for new information-processing methods. The use of optical waveguides gives the light a small cross-section, making coupling to atoms efficient. We present the first waveguide chip designed to address a Bose–Einstein condensate along a row of independent junctions, which are separated by only 10 µm and have large atom–photon coupling. We describe a fully integrated, scalable design, and demonstrate 11 junctions working as intended, using a low-density cold atom cloud with as little as one atom on average in any one junction. The device suggests new possibilities for engineering quantum states of matter and light on a microscopic scale.

This talk is part of the Cold Atoms series.

Tell a friend about this talk:

This talk is included in these lists:

This talk is not included in any other list

Note that ex-directory lists are not shown.

 

Talks@bham, University of Birmingham. Contact Us | Help and Documentation | Privacy and Publicity.
talks@bham is based on talks.cam from the University of Cambridge.