University of Birmingham > Talks@bham > Algebra seminar  > Finite simple groups, prime order elements and width

Finite simple groups, prime order elements and width

Add to your list(s) Download to your calendar using vCal

If you have a question about this talk, please contact Lewis Topley.

The generation of finite simple groups has been a thriving area of research for many years. Since it was established that each is generated by a pair of elements, many interesting refinements have followed: for instance, determining the existence of generating pairs of prescribed orders.

More recently the notion of width has provided an additional perspective on generation, measuring how efficiently a chosen subset generates a group. For example we may ask, can every element be written as a product of at most 2, or perhaps 3, elements from a fixed conjugacy class? Answering such questions relies on a range of tools involving subgroup structure and character theory.

In this talk we will examine the width of finite simple groups with respect to elements of a fixed prime order. We will report on sharp bounds for particular families, and answer questions concerning Lie-type groups of unbounded rank.

This talk is part of the Algebra seminar series.

Tell a friend about this talk:

This talk is included in these lists:

Note that ex-directory lists are not shown.


Talks@bham, University of Birmingham. Contact Us | Help and Documentation | Privacy and Publicity.
talks@bham is based on from the University of Cambridge.