University of Birmingham > Talks@bham > Theoretical Physics Seminars > Detecting fractional Chern insulators in few-boson systems

Detecting fractional Chern insulators in few-boson systems

Add to your list(s) Download to your calendar using vCal

If you have a question about this talk, please contact Dr Hannah Price.

Realizing strongly-correlated topological phases of ultracold gases is a central goal for ongoing experiments. And while fractional quantum Hall states could soon be implemented in small atomic ensembles, detecting their signatures in few-particle settings remains a fundamental challenge. We numerically analyze the center-of-mass Hall drift of a small ensemble of hardcore bosons, initially prepared in the ground state of the Harper-Hofstadter-Hubbard model. By extracting the Hall conductivity in a wide range of the magnetic flux, we identify an emergent Hall plateau compatible with a fractional Chern insulator state: the width of the plateau agrees with the spectral and topological properties of the prepared ground state, while the Hall conductivity approaches a fractional value determined by the many-body Chern number. A comparison with a direct application of Streda’s formula is also discussed. Our calculations suggest that fractional Chern insulators can be detected in cold-atom experiments, using available detection methods.

This talk is part of the Theoretical Physics Seminars series.

Tell a friend about this talk:

This talk is included in these lists:

Note that ex-directory lists are not shown.


Talks@bham, University of Birmingham. Contact Us | Help and Documentation | Privacy and Publicity.
talks@bham is based on from the University of Cambridge.