University of Birmingham > Talks@bham > Combinatorics and Probability seminar > A degree sequence Komlós theorem

A degree sequence Komlós theorem

Add to your list(s) Download to your calendar using vCal

  • UserJoseph Hyde (University of Birmingham)
  • ClockThursday 14 November 2019, 14:00-15:00
  • HouseWatson LTB.

If you have a question about this talk, please contact Eoin Long.

Given graphs G and H, we define an H-tiling in G to be a collection of vertex-disjoint copies of H in G. Let η > 0. We call an H-tiling perfect if it covers all of the vertices in G and η-almost perfect if it covers all but at most an η-proportion of the vertices in G. An important theorem of Komlós provides the minimum degree of G which ensures an η-almost perfect H-tiling in G. We present a degree sequence strengthening of this result and provide a proof sketch. This is joint work with Hong Liu and Andrew Treglown.

Using the aforementioned theorem of Komlós, Kühn and Osthus determined the minimum degree of G that ensures a perfect H-tiling in G. We present a degree sequence version of their result as an application of our degree sequence Komlós theorem. This is joint work with Andrew Treglown.

This talk is part of the Combinatorics and Probability seminar series.

Tell a friend about this talk:

This talk is included in these lists:

Note that ex-directory lists are not shown.

 

Talks@bham, University of Birmingham. Contact Us | Help and Documentation | Privacy and Publicity.
talks@bham is based on talks.cam from the University of Cambridge.