University of Birmingham > Talks@bham > Astrophysics Seminars >  Investigating fundamental physics using numerical simulations of black hole environments

Investigating fundamental physics using numerical simulations of black hole environments

Add to your list(s) Download to your calendar using vCal

  • UserKaty Clough (Oxford)
  • ClockWednesday 27 February 2019, 14:30-15:30
  • HouseLaw LT2.

If you have a question about this talk, please contact Sean McGee.

Numerical simulations of binary black holes have gained much (well deserved) attention since the LIGO detections of gravitational waves, where they are used to provide templates for the signals produced during the merger phase. However, the application of these now mature numerical techniques to problems of fundamental physics is still a relatively new and underdeveloped area of research.

Much of particle physics and cosmology concerns the behaviour of fields and their excitations, with some well known examples being the Higgs field, or the inflaton during inflation. The evolution of even the simplest fields in strong, dynamical gravity environments is highly non trivial and generally necessitates a numerical approach. I will describe two examples of how the study of such fields around black holes may lead to the discovery of new physics. Firstly, I will describe the behaviour of clusters of light bosonic particles called axions, which are gaining popularity as dark matter candidates, and their collisions with compact objects such as black holes and neutron stars. Secondly, I will discuss the scattering of neutrinos by black holes, and the information that the resulting interference patterns can give us about the absolute neutrino masses.

This talk is part of the Astrophysics Seminars series.

Tell a friend about this talk:

This talk is included in these lists:

Note that ex-directory lists are not shown.

 

Talks@bham, University of Birmingham. Contact Us | Help and Documentation | Privacy and Publicity.
talks@bham is based on talks.cam from the University of Cambridge.