University of Birmingham > Talks@bham > Algebra Seminar  > Uniform Domination for Simple Groups

Uniform Domination for Simple Groups

Add to your list(s) Download to your calendar using vCal

If you have a question about this talk, please contact Chris Parker.

It is well known that every finite simple group can be generated by just two elements. In fact, by a theorem of Guralnick and Kantor, there is a conjugacy class C such that for each non-identity element x there exists an element y in C such that x and y generate the entire group. Motivated by this, we introduce a new invariant for finite groups: the uniform domination number. This is the minimal size of a subset S of conjugate elements such that for each non-identity element x there exists an element s in S such that x and s generate the group. This invariant arises naturally in the study of generating graphs.

In this talk, I will present recent joint work with Tim Burness, which establishes best possible results on the uniform domination number for finite simple groups, using a mix of probabilistic and computational methods together with recent results on the base sizes of primitive permutation groups.

This talk is part of the Algebra Seminar series.

Tell a friend about this talk:

This talk is included in these lists:

Note that ex-directory lists are not shown.


Talks@bham, University of Birmingham. Contact Us | Help and Documentation | Privacy and Publicity.
talks@bham is based on from the University of Cambridge.