![]() |
![]() |
University of Birmingham > Talks@bham > Analysis seminar > Defects in nematic shells: a discrete-to-continuum approach
Defects in nematic shells: a discrete-to-continuum approachAdd to your list(s) Download to your calendar using vCal
If you have a question about this talk, please contact Dr. Maria Carmen Reguera. May be of interest to applied mathematicians. Nematic shells are the datum of a surface coated with a thin film of liquid crystals. Liquid crystals are composed by rod-shaped molecules, which tend to align to each other, locally. The interaction between the molecules and the surface induces topological defects, that is, regions of rapid changes in the orientation of the molecules that carry a topological charge. In this talk, we consider a (simplified) discrete model for nematic shells, where the molecules sit at the vertices of a triangular mesh, and study defects in the limit as the mesh parameter tend to zero. This is joint work with Antonio Segatti (Università di Pavia, Italy). This talk is part of the Analysis seminar series. This talk is included in these lists:Note that ex-directory lists are not shown. |
Other listsBirmingham Popular Maths Lectures Met and Mat Seminar Series Featured talksOther talksCounting cycles in planar graphs Topological interfaces, phase transitions, and point-group symmetries – spinor Bose-Einstein condensates as topological-defect laboratories Wave turbulence in the Schrödinger-Helmholtz equation TBA Ultrafast Spectroscopy and Microscopy as probes of Energy Materials Quantum Sensing in Space |