University of Birmingham > Talks@bham > Theoretical computer science seminar > A domain-theoretic approach to Brownian motion and general continuous stochastic processes

A domain-theoretic approach to Brownian motion and general continuous stochastic processes

Add to your list(s) Download to your calendar using vCal

If you have a question about this talk, please contact Paul Taylor.

We introduce a domain-theoretic framework for continuous-time, continuous-state stochastic processes. The laws of stochastic processes are embedded into the space of maximal elements of the normalised probabilistic power domain on the space of continuous interval-valued functions endowed with the relative Scott topology. We use the resulting ω-continuous bounded complete dcpo to define partial stochastic processes and characterise their computability. For a given continuous stochastic process, we show how its domain-theoretic, i.e., finitary, approximations can be constructed, whose least upper bound is the law of the stochastic process. As a main result, we apply our methodology to Brownian motion. We construct a partial Wiener measure and show that the Wiener measure is computable within the domain-theoretic framework. (Joint work with Abbas Edalat.)

This talk is part of the Theoretical computer science seminar series.

Tell a friend about this talk:

This talk is included in these lists:

Note that ex-directory lists are not shown.

 

Talks@bham, University of Birmingham. Contact Us | Help and Documentation | Privacy and Publicity.
talks@bham is based on talks.cam from the University of Cambridge.