![]() |
![]() |
University of Birmingham > Talks@bham > Analysis seminar > Non-autonomous maximal regularity for divergence-form operators
Non-autonomous maximal regularity for divergence-form operatorsAdd to your list(s) Download to your calendar using vCal
If you have a question about this talk, please contact Andrew Morris. Let $V \subseteq H$ be Hilbert spaces with dense and continuous embedding. An old problem of J.L. Lions asks for maximal regularity in $H$ of the non-autonomous Cauchy problem $u’(t) + A(t) u(t) = f(t)$, $u(0) = 0$, where each operator $A(t)$ is induced by an elliptic sesquilinear form on $V$. Recent developments have carved out a threshold on the regularity of $A$ as a map $[0,T] \to \mathcal{L}(V, V^*)$: Lions’ question can be answered in the affirmative in case of Hölder-continuity of exponent $\alpha > 1/2$ and there exist counterexamples if only $\alpha < 1/2$. The borderline case, however, was left open, even if all operators are differential operators in divergence-form. In this talk we present a rather simple proof of such a result stemming on some hidden coercivity of the parabolic operator $\partial_t + A$. This talk is part of the Analysis seminar series. This talk is included in these lists:Note that ex-directory lists are not shown. |
Other listsFeatured lists Pure Détours Speech Recognition by Synthesis SeminarsOther talksThe percolating cluster is invisible to image recognition with deep learning Signatures of structural criticality and universality in the cellular anatomy of the brain [Friday seminar]: Irradiated brown dwarfs in the desert Provably Convergent Plug-and-Play Quasi-Newton Methods for Imaging Inverse Problems |