![]() |
![]() |
University of Birmingham > Talks@bham > Applied Mathematics Seminar Series > Singularities, Slip, Substrates and Structure: Challenges of modelling the moving contact line problem
![]() Singularities, Slip, Substrates and Structure: Challenges of modelling the moving contact line problemAdd to your list(s) Download to your calendar using vCal
If you have a question about this talk, please contact Alexandra Tzella. The moving contact line problem occurs when modelling one fluid replacing another as it moves along a solid surface, a situation widespread throughout industry and nature. Classically, the no-slip boundary condition at the solid substrate, a zero-thickness interface between the fluids, and motion at the three-phase contact line are incompatible – leading to the well-known shear-stress singularity. In this talk we will review recent progress made by our group, considering the problem and related physics from the micro to macroscopic length scales. This includes comparing a variety of models used to overcome the singularities, based on slip, disjoining pressure, interface formation and diffuse-interfaces; analysing the impact of random substrate heterogeneities and inclinations; and exploring the detailed nature of the fluid structure in the vicinity of the contact line at the smallest scales by developing rigorously justified models based on the statistical mechanics of fluids. This talk is part of the Applied Mathematics Seminar Series series. This talk is included in these lists:Note that ex-directory lists are not shown. |
Other listsBravo RSLC PhD/Postdoc Seminars (Chemistry) Virtual Harmonic Analysis SeminarOther talksSylow branching coefficients for symmetric groups Modelling uncertainty in image analysis. Geometry of alternating projections in metric spaces with bounded curvature Quantum simulations using ultra cold ytterbium Extending the Lax type operator for finite W-algebras Provably Convergent Plug-and-Play Quasi-Newton Methods for Imaging Inverse Problems |