University of Birmingham > Talks@bham > Theoretical Physics Seminars > Strong-coupling ansatz for the one-dimensional Fermi gas in a harmonic potential

Strong-coupling ansatz for the one-dimensional Fermi gas in a harmonic potential

Add to your list(s) Download to your calendar using vCal

  • UserDr Meera Parish, UCL
  • ClockThursday 27 November 2014, 13:45-15:00
  • HouseTheory Library.

If you have a question about this talk, please contact Kevin Ralley.

The 1D Fermi gas with repulsive short-range interactions provides an important model of strong correlations and is often amenable to exact methods. However, in the presence of confinement, no exact solution is known for an arbitrary number of strongly interacting fermions. Here, we propose a novel ansatz for generating the lowest-energy wavefunctions of the repulsive 1D Fermi gas in a harmonic potential near the Tonks-Girardeau limit of infinite interactions. We specialize to the case of a single impurity interacting with $N$ majority particles, where we may derive analytic forms of the approximate wavefunctions. Comparing with exact numerics, we show that the overlap between the wavefunctions from our ansatz and the exact ones in the ground-state manifold exceeds 0.9997 for $N\leq 8$. Moreover, the overlap for the ground-state wavefunction extrapolates to 0.9999 as $N\to\infty$. Thus our ansatz is essentially indistinguishable from numerically exact results in both the few- and many-body limits.

This talk is part of the Theoretical Physics Seminars series.

Tell a friend about this talk:

This talk is included in these lists:

Note that ex-directory lists are not shown.

 

Talks@bham, University of Birmingham. Contact Us | Help and Documentation | Privacy and Publicity.
talks@bham is based on talks.cam from the University of Cambridge.