![]() |
![]() |
University of Birmingham > Talks@bham > Theoretical Physics Seminars > Strong-coupling ansatz for the one-dimensional Fermi gas in a harmonic potential
![]() Strong-coupling ansatz for the one-dimensional Fermi gas in a harmonic potentialAdd to your list(s) Download to your calendar using vCal
If you have a question about this talk, please contact Kevin Ralley. The 1D Fermi gas with repulsive short-range interactions provides an important model of strong correlations and is often amenable to exact methods. However, in the presence of confinement, no exact solution is known for an arbitrary number of strongly interacting fermions. Here, we propose a novel ansatz for generating the lowest-energy wavefunctions of the repulsive 1D Fermi gas in a harmonic potential near the Tonks-Girardeau limit of infinite interactions. We specialize to the case of a single impurity interacting with $N$ majority particles, where we may derive analytic forms of the approximate wavefunctions. Comparing with exact numerics, we show that the overlap between the wavefunctions from our ansatz and the exact ones in the ground-state manifold exceeds 0.9997 for $N\leq 8$. Moreover, the overlap for the ground-state wavefunction extrapolates to 0.9999 as $N\to\infty$. Thus our ansatz is essentially indistinguishable from numerically exact results in both the few- and many-body limits. This talk is part of the Theoretical Physics Seminars series. This talk is included in these lists:Note that ex-directory lists are not shown. |
Other listsType the title of a new list here Type the title of a new list here Type the title of a new list hereOther talksHorizontal Mean Curvature Flow and stochastic optimal controls TBA TBA Wave turbulence in the Schrödinger-Helmholtz equation TBC Quantum Sensing in Space |